
RESEARCH ARTICLE
10.1002/2016WR019028

A computationally efficient parallel Levenberg-Marquardt
algorithm for highly parameterized inverse model analyses
Youzuo Lin1, Daniel O’Malley2, and Velimir V. Vesselinov2

1Geophysics Group (EES-17), Earth and Environment Science Division, Los Alamos National Laboratory, Los Alamos, New
Mexico, USA, 2Computational Earth Sciences Group (EES-16), Earth and Environment Science Division, Los Alamos
National Laboratory, Los Alamos, New Mexico, USA

Abstract Inverse modeling seeks model parameters given a set of observations. However, for practical
problems because the number of measurements is often large and the model parameters are also
numerous, conventional methods for inverse modeling can be computationally expensive. We have
developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse
modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the
solution of a linear system of equations which can be prohibitively expensive to compute for moderate to
large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace
such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov
subspace computed when using the first damping parameter and recycle the subspace for the subsequent
damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using
these computational techniques. We apply this new inverse modeling method to invert for random
transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to
solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in
Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with
Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our
Levenberg-Marquardt method yields a speed-up ratio on the order of �101 to �102 in a multicore
computational environment. Therefore, our new inverse modeling method is a powerful tool for
characterizing subsurface heterogeneity for moderate to large-scale problems.

1. Introduction

Inverse problems in groundwater modeling are usually under-determined and ill posed, because of the lim-
ited data coverage [Sun, 1994; Carrera and Neuman, 1986]. In recent years, with the help of regularization
techniques [Tarantola, 2005; Engl et al., 1996], there is a trend to increase the number of model parameters
[Hunt et al., 2007]. It has been discussed in many references that these highly parameterized models have
great potential for characterizing subsurface heterogeneity [Hunt et al., 2007; Tonkin and Doherty, 2005].

As both the data measurements and model parameters increase in number, the size of the inversion problem
becomes larger. Even though regularized inverse modeling methods yield hydrogeologically reasonable
results [Barajas-Solano et al., 2014; van den Doel and Ascher, 2006; Liu and Ball, 1999], the major issue hindering
the highly parameterized large inverse problems is the computational burden [Doherty and Hunt, 2010]. Spe-
cifically, the computational costs mostly come from the calculation of the Jacobian matrix and from solving
the linear systems for the search direction within the Levenberg-Marquardt algorithm. Singular value decom-
position (SVD) based linear solver is frequently used in solving inverse modeling; however, according to Doh-
erty and Hunt [2010], employing the traditional Arnoldi SVD to solve a highly parameterized problem with a
number of the model parameters greater than 2500 will require inordinate computational time.

Different methods have been proposed and developed to alleviate the problem of expensive computational
costs. One of the directions is based on the subspace approximation. Several types of subspaces have been
utilized including principle components subspace [Kitanidis and Lee, 2014; Lee and Kitanidis, 2014; Tonkin
and Doherty, 2005], Krylov subspace [Liu et al., 2014; Saibaba and Kitanidis, 2012], subspace spanned by
reduced-order model [Liu et al., 2014], and active subspace [Constantine et al., 2014]. Specifically, in the
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work of Tonkin and Doherty [2005], a hybrid regularized inversion method is developed. A subspace is first
generated using the principle orthogonal directions obtained from SVD. A set of super parameters are
obtained in the subspace and Tikhonov regularization is then imposed on the super parameters. Because
the dimension of the subspace is much smaller than the original parameter space, the computational cost
in solving the model parameters is shown to be less expensive than that of solving the parameters in the
original model space. In the work of Kitanidis and Lee [2014], the low-rank approximation technique is
employed to reduce both the computation and memory requirements. The authors have further applied
the same technique to hydraulic tomography in Lee and Kitanidis [2014] and yield very high accuracy with
reduced computational cost. Liu et al. [2013] solve hydraulic tomography as a geostatistical inverse prob-
lem, which is similar to Lee and Kitanidis [2014]. Instead of using randomization to obtain a low-rank matrix,
they employ reduced-order models (ROMs) to approximate the high-dimensional system with a low-
dimensional problem to reduce the computational costs. In the follow-up work of Liu et al. [2014], they solve
the linear system for search direction using the minimum residual method (MINRES) [Golub and Van Loan,
1996] to take the advantage of the symmetric positive definite (SPD) system matrix [Paige and Saunders,
1975]. Saibaba and Kitanidis [2012] incorporates the hierarchical matrices technique with a matrix-free Kry-
lov subspace approach to improve the computational efficiency. In the work of Constantine et al. [2014], a
subspace is constructed by exploring the directions of the strongest variability based on functional gradient.
The author and his collaborators have further applied a similar idea to analyzing the sensitivity of a hydro-
logic model [Jefferson et al., 2015].

Another possibility for increasing computational performance is to employ parallelism in the inversion algo-
rithms. Two different types of parallelism techniques can be categorized with respect to the level of the parallel
operations. In the work of Coleman and Plassmann [1992], a parallelized row-oriented Householder QR method
is utilized to solve for the search directions. Similarly, Zhu and Zhang [2013] also explore the parallelism of the
QR factorization in a GPU environment. The commonality of the aforementioned methods is that they both
employ the fine-grained parallelism, i.e., the parallelism is only applied to subprocedures. Hence, it can only be
helpful to improve the computational efficiency locally. In order to further improve the overall computational
efficiency, a coarse-grained parallelism is preferable. An example of the coarse-grained parallelism is the latest
version of the software package, PEST11 Version 3 [Welter et al., 2015]. In this version, a parallel run manager,
YAMR (Yet Another run ManageR), has been integrated. Another example of the coarse-grained parallelism is
the ‘‘Parallel PEST’’ option used in the software packages of PEST [Doherty and Hunt, 2010].

The Levenberg-Marquardt (LM) algorithm has been used extensively in solving nonlinear inverse problems
in groundwater modeling because of its robustness [Finsterle and Kowalsky, 2011; Tonkin and Doherty, 2005;
Nowak and Cirpka, 2004; Cooley, 1985]. In this work, we also use it to solve our minimization problem. There
are two portions of the LM algorithm that comprise most of the computational costs: the calculation of the
Jacobian matrix and the computation of the linear system for search direction. To calculate the Jacobian
matrix efficiently, we employ the adjoint-state method [Custodio et al., 2012; Strang, 2007] to obtain the
Jacobian matrix instead of the finite difference approach. Therefore, our focus to improve computational
efficiency is on the calculation for search direction.

We develop a computationally efficient Levenberg-Marquardt (LM) algorithm incorporating both a sub-
space approximation and parallelism to solve the highly parameterized inverse modeling problems. The
novelties and major features of our work are the following. We employ a Krylov subspace recycling tech-
nique to the linear solver in the Levenberg-Marquardt algorithm. We first employ the Golub-Kahan-Lanczos
(GKL) bidiagonalization technique to generate the Krylov subspace and show that the damping parameter
is independent of the generated Krylov subspace. Our developed approach takes full advantage of this sep-
arability of the damping parameter from the solution space, and therefore can benefit more from the recy-
cling technique compared to other existing work using an idea similar to recycling [Doherty, 2015; Tonkin
and Doherty, 2005]. We also employ both coarse and fine-grained parallelism to our LM method such that
the implementation of our LM algorithm can be parallelized in both global and local-level computational
procedures to improve the overall efficiency.

Our subspace approximation method belongs to the Krylov subspace category. In particular, we first refor-
mulate the search direction associated linear system as an equivalent least squares problem and then
employ the GKL-bidiagonalization-based least squares with QR factorization (LSQR) method [Paige and
Saunders, 1982a, 1982b] to solve this least squares problem for the search direction. LSQR is a Krylov-
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subspace-based iterative linear solver. It projects the original problem down to a subspace and solves the
projected problem, instead of obtaining the solution in the original parameter space. Usually, the projected
problem can be a very good approximation to the original problem, but has much smaller dimensionality.
Therefore, solving the projected problem can significantly reduce the computational costs.

The Levenberg-Marquardt algorithm linearly combines the search directions from steepest descent method
and Newton-type methods. Correspondingly, the weight of the contribution from the steepest descent
method is defined as a damping parameter. The damping parameter plays an important role in ensuring
that the Jacobian matrix is positive definite and the search direction in the parameter space yields an opti-
mal balance between first-order and second-order optimization steps and avoids the local minima. There-
fore, selecting the damping parameter is a critical issue with the LM algorithm. This is where we employ our
coarse-grained parallelism. There have been a number of research efforts on estimating an appropriate val-
ue of the damping parameter based on the previous and the present values of the objective function or
Jacobian [Naveen et al., 2010; Lampton, 2009; Araneda, 2004]. Naveen et al. [2010] use the relative changes
in the objective function to adjust the value of the damping parameter. The common point among all these
methods is that the optimal damping parameter needs to be selected in a sophisticated sequential strategy.
We, on the other hand, solve several linear systems for multiple damping parameters in each LM iteration
simultaneously, and use the one that yields the best objective function value as the search direction. How-
ever, distributing the linear systems among different CPU cores can increase the communication overhead.
Utilizing the fact that the subspace basis generated and spanned by the lower-dimension space is indepen-
dent of the damping parameter, we recycle the Krylov subspace basis for all the new damping parameters.
Therefore, the search directions can be all obtained efficiently and simultaneously.

Through our numerical cost analysis, we show that using our techniques, our new LM method improves the
computational efficiency significantly. The computational complexity can be reduced by an order of the
model dimension after the first damping parameter in solving the linear system at each LM iteration.

To evaluate the performance of our algorithm, we test our new Levenberg-Marquardt algorithm to solve for
random transmissivities (in 2-D) and random conductivities (in 3-D) from steady state observations of
hydraulic head. The hydraulic heads were ‘‘observed’’ from the solution of the steady state groundwater
equation using a reference transmissivity/conductivity field at a number of observation points (monitoring
wells). We implement our algorithm in Julia [Bezanson et al., 2014] as part of the MADS computational
framework [Vesselinov, 2012]. By comparing with a Levenberg-Marquardt method using standard linear
inversion techniques such as QR and SVD methods, our Levenberg-Marquardt method yields speed-up ratio
in the order of �101 to �102 in a multicore computational environment.

In the following sections, we first briefly describe the fundamentals of inverse modeling and nonlinear opti-
mization techniques including the Levenberg-Marquardt method (section 2). We develop a Krylov-subspace
approximated Levenberg-Marquardt method (section 3), then we further incorporate parallelism and the
subspace recycling technique to our method (section 4). We then apply our method to test problems and
discuss the results (section 5). Finally, concluding remarks are presented in section 6.

2. Theory

In this section, we will review the fundamentals of hydrogeologic inverse modeling, and the classical
Levenberg-Marquardt method.

2.1. Inverse Modeling
We consider a two-dimensional steady state groundwater flow equation on a square domain ½a; b�3½c; d�

r � ðTrhÞ5g;

gðx; yÞ50;

@h
@x

����
a;y

5
@h
@x

����
b;y

50;

hðx; cÞ50; hðx; dÞ51;

(1)

where h is the hydraulic head, T is the transmissivity, and g is a source/sink (here, set to zero).
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The forward modeling problem in equation (1) can be written as

h5f ðTÞ; (2)

where f ð�Þ is the forward operator mapping from the model parameter space to the measurement
space. Specifically, the operator f ð�Þ maps the model parameter T onto the state variable h according to
equation (1). The operator f ð�Þ is nonlinear in that the map from the model parameters T to the state vari-
able h is not a linear map.

It may be worthwhile to mention that the computational technique developed in this paper is not limited
to the specific forward-modeling operator defined in equation (1). It can be applied broadly to forward-
modeling operators with various physical meanings.

Correspondingly, the problem of hydrogeologic inverse modeling is to estimate the transmissivity provided
with available measurements. Usually, such a problem is posed as a minimization problem

m5 arg min
m

jjd2f ðmÞjj22
n o

; (3)

where d represents a recorded hydraulic head data set and m is the inverted model parameter, kd2f ðmÞk2
2

measures the data misfit, and jj � jj2 stands for the L2 norm. Solving equation (3) yields a model m that mini-
mizes the mean-squared difference between observed and synthetic data. However, because of the limited
data coverage, solving the inverse problem based on equation (3) is ill posed. Moreover, because of the
nonlinearity of the forward modeling operator f, the solution of the inverse problem may become trapped
in a local minimum of the misfit function. Regularization techniques can be used to address the nonunique-
ness of the solution and reduce the ill-posedness of the inverse problem.

The most commonly used regularization technique is the Tikhonov regularization [Vogel, 2002; Hansen,
1998]. Incorporated with equation (3), we have inverse modeling with Tikhonov regularization

m5 arg min
m

lðmÞf g; (4)

5 arg min
m
fjjd2f ðmÞjj221kjjmjj22g; (5)

where the parameter k is the Tikhonov regularization parameter, which controls the amount of regulariza-
tion in the inversion.

To further account for the errors in the data measurement and the model, we follow the work in Kitanidis
and Lee [2014] and Lee and Kitanidis [2014], and employ the generalized least squares that weights the data
misfit and regularization terms in equation (5) using covariance matrices

m5arg min
m

gðmÞf g

5arg min
m
fjjd2f ðmÞjj2R1kjjm2m0jj2Qg;

(6)

where m0 is the prior model parameters. The weighted data misfit and regularization terms are defined as

jjd2f ðmÞjj2R5ðd2f ðmÞÞ0 R21ðd2f ðmÞÞ; (7)

jjm2m0jj2Q5ðm2m0Þ0 Q21ðm2m0Þ; (8)

where R is the covariance matrix of the data error and Q is the covariance matrix of the model parameters.

In Appendix A, we provide the residuals and gradients of equations (5) and (6) and show that their gradients
share the same form

Grad52JT rðmÞ; (9)

where the Jacobian matrix J and residual vector rðmÞ are further defined according to the cases of either the
ordinary least squares problem as in equation (5) or the generalized least squares problem as in equation (6).

In order to numerically solve the minimization problem in equation (6), we employ the Levenberg-
Marquardt method because of its robustness [Nocedal and Wright, 2000; Bertsekas, 1999].
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2.2. Classical Levenberg-Marquardt Method
The Levenberg-Marquardt (LM) method is a trust-region optimization method, which is usually posed as
[Nocedal and Wright, 2000; Bertsekas, 1999]

mðk11Þ5mðkÞ1pðkÞ; (10)

where k is the iteration index and pðkÞ is the search direction. The LM method combines the methods of
steepest descent and Gauss-Newton. It can be seen as a damped Gauss-Newton method. The LM method
comes after the work of Levenberg [1944] and Marquardt [1963]. In the Levenberg’s original version of the
method, the search direction is defined as

pðkÞ52 ðJðkÞÞ0JðkÞ1l I
h i21

Grad: (11)

Marquardt [1963] modified Levenberg’s approach by using a different damping term

pðkÞ52 ðJðkÞÞ0JðkÞ1l diagððJðkÞÞ0JðkÞÞ
h i21

Grad: (12)

The damping parameter, l, is defined to be l > 0, which ensures the search direction of pðkÞ is a descent
direction. When the values of l are large, the damping terms in equations (11) and (12) dominate the search
direction, hence the search direction approximates that of the steepest descent. On the other hand, when
the values of l are small, the first terms in equations (11) and (12) become more significant than the damp-
ing term, hence, the search direction approximates a Gauss-Newton search direction. Therefore, by chang-
ing the value of the damping parameter l, the LM method is capable of behaving like steepest descent
method or Gauss-Newton method.

The classical Levenberg-Marquardt algorithm has been widely used in inverse modeling, because it is more
robust than the Gauss-Newton method and yields a faster rate of convergence than the steepest descent
method [Finsterle and Kowalsky, 2011; Fienen et al., 2009; Nowak and Cirpka, 2004; Simunek et al., 1998].
However, the efficiency and robustness of Levenberg-Marquardt algorithm is dependent on the correct
selection of the damping parameter [Nielsen, 1999]. Improper selection of the damping parameter may lead
to poor convergence or even divergence [Naveen et al., 2010; Lampton, 2009; Araneda, 2004]. Furthermore,
at every LM iteration, trials of different damping parameter values lead to additional solutions of a linear
system for search a direction, which increase the computational cost significantly. Therefore, it is very desir-
able to develop a Levenberg-Marquardt algorithm which not only yields accurate and robust results but
reduces the cost of these additional solutions of a linear systems for a search direction.

3. Krylov-Subspace Approximated Levenberg-Marquardt Algorithm for Inverse
Modeling

Krylov subspace methods are one of the most important tools for solving large-scale sparse problems
[Saad, 2003; Golub and Van Loan, 1996]. For most hydraulic inversion problems, the data coverage is limited.
In this section, we will first explore the matrix structure of the LM method and then discuss how to employ
the Krylov subspace approximation technique to improve the efficiency of classical LM method.

3.1. Linear System Reformulation and Matrix Structure
According to the derivation in Appendix A, we can rewrite the gradient of the objective function as

Grad52ðJðkÞÞ0 rðkÞ: (13)

Therefore, solving for pðkÞ in equations (11) and (12) can be posed equivalently as searching for the minima
of the following two least squares problems, respectively,

pðkÞ5 arg min
pk

�����
���� JðkÞffiffiffi

l
p

I

" #
pðkÞ2

rðkÞ

0

" #����
����

2

�
; (14)
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pðkÞ5 arg min
pk

�����
���� JðkÞffiffiffi

l
p

diagððJðkÞÞ0JðkÞÞ

" #
pðkÞ2

rðkÞ

0

" #����
����

2

�
; (15)

where equation (14) is the Levenberg version of the LM method and equation (15) is the Marquardt version
of the LM method.

For most existing LM methods, QR decomposition or singular value decomposition (SVD) based direct solv-
ers are used to solve equations (14) and (15) for the search direction, pðkÞ, because of their stability [Madsen
et al., 2004; Nielsen, 1999]. However, the computational costs associated with those two methods are high
for problems with a large number of parameters.

We observe that in both equations (14) and (15), the system matrices consist of two parts: the Jacobian
matrix JðkÞ and a diagonal matrix, the identity matrix I in equation (14) or the diagonal matrix, diagððJðkÞÞ0JðkÞÞ
in equation (15). At a given iteration k, the Jacobian matrix remains the same while the damping parameter l
varies. A significant amount of computational cost can be wasted without considering this special matrix
structure. Second, for many inverse modeling problems, the model and data space are usually very large, lead-
ing to large Jacobian matrices. Hence, direct linear solvers based on QR or SVD methods might not be as effi-
cient as iterative solvers [Saad, 2003]. Therefore, by taking these two points into consideration, we develop a
computational method that can take advantage of the matrix structure of the problem and avoid the direct
solution of the linear systems.

3.2. Krylov-Subspace Approximated Levenberg-Marquardt Method
We provide the details regarding the generation of the Krylov subspace utilizing Golub-Kahan-Lanczos
(GKL) technique in Appendix B.

A straight-forward application of the GKL technique to the classical LM method is to let the system matrix J
in equation (B1) equal the left-hand side of equations (14) and (15)

J5
JðkÞffiffiffi
l
p

I

" #
(16)

or

J5
JðkÞffiffiffi

l
p

diagððJðkÞÞ0JðkÞÞ

" #
: (17)

However, such a direct application of the GKL technique will be rather computationally expensive. We
notice that the formulations of our problem in equations (14) and (15) are different from the one in equation
(B1), in which there is no damping term. Below we show that the bidiagonalization technique described
in Appendix B can still be applied to the damped least squares problems in equations (14) and (15) without
adding extra computational costs.
3.2.1. Levenberg’s Algorithm: The Case of Equation (14)
First we consider the case of equation (14). Employing a similar bidiagonalization procedure as in equations
(B3) and (B4), we will have

min
pðkÞ

�����
���� JðkÞffiffiffi

l
p

I

" #
pðkÞ2

rðkÞ

0

" #
jj2g ! min

yðkÞ
jf j

BðkÞffiffiffi
l
p

I

" #
yðkÞ2bð1Þeð1Þ

����
����

2

�
: (18)

The subspace generated in the above equation (18) is

Kk5span ðJðkÞÞ0JðkÞ1lI; ðJðkÞÞ0rðkÞ
� �

;

5span ðJðkÞÞ0JðkÞ; ðJðkÞÞ0rðkÞ
� �

:
(19)

We observe that in equation (18), the bidiagonalization procedure is independent of the damping parame-
ter l. Furthermore, comparing the Krylov subspace generated in equation (19) for the damped least squares
problem of equation (14) to the one in equation (B2), we observe that the Krylov subspace generated for
the damped least squares problem is also independent of the damping parameter l. These two facts can
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be utilized to reduce the computational cost of solving for the search direction and therefore improve the
efficiency of the algorithm.

The right-hand side of equation (18) is an augmented least squares problem with a system-matrix consist-
ing of a lower-bidiagonal matrix BðkÞ and a diagonal matrix

ffiffiffi
l
p

I. We employ Givens rotations to eliminate
the diagonal matrix

ffiffiffi
l
p

I and meanwhile transform the lower-bidiagonal matrix BðkÞ into a upper bidiagonal
matrix. All the details are provided in Appendix C.

Many efficient methods can be used to solve the resulting least squares problem in equation (C4) such as
Gaussian elimination and back-substitution [Golub and Van Loan, 1996]. We employ a three-term recursion
to obtain the solution, which is similar to those in equations (B13–B15),

mðkÞ5mðk21Þ1ð/ðkÞÞ0ðzðkÞÞ0; ðzðkÞÞ05 1

ðqðkÞÞ0
ðvðkÞ2ðhðk21ÞÞ0ðzðk21ÞÞ0Þ: (20)

3.2.2. Marquardt’s Algorithm: The Case of Equation (15)
The major difference between Levenberg’s formulation in equation (14) and Marquardt’s formulation in
equation (15) is that there is a nonidentity squared diagonal matrix as the lower part of the system matrix
contained in Marquardt’s algorithm.

Another equivalent form of equation (15) is

pðkÞ5 arg min
pðkÞ

kJðkÞpðkÞ2rðkÞk2
21ljjDpðkÞjj22

n o
; (21)

where D5diag ðJðkÞÞ0JðkÞ
� 	

.

By using a variable substitution

pðkÞ5DpðkÞ; (22)

we can transform equation (21) into

pðkÞ5 arg min
p k

k�J ðkÞpðkÞ2rðkÞk2
21ljjpðkÞjj22

n o
; (23)

where �JðkÞ5JðkÞD21.

The transformed equation (23) now shares the same form as that in equation (14), therefore all the afore-
mentioned techniques can be applied to the Marquardt’s algorithm in equation (23) and solve for new vari-
able pðkÞ. Once the minimization problem in equation (23) is solved, the original variable pðkÞ can be
obtained by

pðkÞ5D21pðkÞ: (24)

Because the matrix D is a diagonal matrix, solving the above equation is trivial.

4. Coarse-Grained Parallelized Levenberg-Marquardt Algorithm for Inverse
Modeling

Parallelism has been used to increase the computational efficiency of the Levenberg-Marquardt method.
Both coarse and fine-grained parallelism have been employed to LM methods in literature. As for a coarse-
grained parallelism strategy, a parallel run manager, YAMR (Yet Another run ManageR), has been integrated
with the latest version of the software package, PEST11 Version 3 [Welter et al., 2015]. Another example of
a coarse-grained parallelism strategy is the ‘‘Parallel PEST’’ option used in the software package of PEST
[Doherty and Hunt, 2010]. A more common utilization of parallelism in the LM method is fine-grained paral-
lelism, where parallelism is employed to manipulate a specific numerical operation. For example, in both
the work of Coleman and Plassmann [1992] and Zhu and Zhang [2013], parallelism is applied to the QR fac-
torization. Fine-grained parallelism can help improve the computational efficiency locally. However, because
of the sequential selection scheme of the damping parameter, the efficiency of the locally parallelized LM
methods will be bounded by sequential characteristics in selecting the optimal damping parameter. We
develop an LM algorithm with a combination of both fine and coarse-grained parallelism. Specifically, in the
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level of coarse-grained parallelism we solve for multiple search directions simultaneously instead of relying
on a sequential damping parameter search. In the level of fine-grained parallelism, we utilize multicore ver-
sions of all the Basic-Linear-Algebra-Subprograms (BLAS). To further increase the computational efficiency,
we employ the subspace recycling technique to exploit the separability of damping parameters from the
solution subspace.

4.1. Parallel Selection of the Damping Parameter
Without loss of generality, we use Marquardt’s algorithm in equation (15) to discuss our strategy to select
the damping parameter l.

In the sequential selection scheme of the damping parameter, the gain factor in equation (F1) is calculated
to justify the validity of the damping parameter. Even though the linear solver procedure can be imple-
mented in parallel, the overall computation can stagnate in selecting the appropriate damping parameter.
We, on the other hand, generate multiple damping parameters at each iteration

l5l0310y ; (25)

where y52n=2;2n=211; . . . ; n=221; n=2 and n is the number of the damping parameters which are
being used. Out of the n potential search directions, we select the one which yields the smallest function
objective value. The objective function values can also be computed in parallel. Once the current iteration is
completed, we update l0 according to equation (F2). The major benefit of parallel selection of the damping
parameter is the avoidance of the sequential selection of the damping parameter at every LM iteration.

4.2. Recycled Krylov Subspace for Multiple Damping Parameters
Through the discussion of the Krylov subspace technique in section 3, we notice that provided with an
initial damping parameter of l0 we will obtain not only the search direction of pðkÞ, but also the Krylov sub-
space generated during the GKL bidiagonalization procedure. As discussed previously, the bidiagonalization
procedure in equation (18) is independent of the damping parameter l and the Krylov subspace generated
in equation (19) is also independent of the selection of the damping parameter. Hence, at every LM itera-
tion step we can further save the computational cost at every CPU core by recycling the subspace generat-
ed from solving the linear system using the initial damping parameter l0.

Specifically, with n damping parameters generated according to equation (25), our LM method consists of
two operations at each iteration: ‘‘linear solver’’ and ‘‘recycling.’’ The operation of ‘‘linear solver’’ is to solve
for the search direction using the first damping parameter l0, and the ‘‘recycling’’ is to obtain all the search
directions by recycling the subspace for the rest of the damping parameters. The only procedures that we
need to recompute for the ‘‘recycling’’ are the Givens rotation and the update of the solution as in equations
(C3) and (20). Relative to the bidiagonalization step, the computational costs of Givens rotation and the
solution update are trivial. Hence, the ‘‘recycling’’ is computationally negligible compared to the ‘‘linear solv-
er’’ operation.

Therefore, our strategy to select the optimal damping parameter is to solve for the search direction in equa-
tion (15) using an initial damping parameter value l0, then simultaneously solve for multiple search direc-
tions using different values of the damping parameters according to equations (C3), (20), (24), and (25).
Theoretically, both the steps of ‘‘linear solver’’ and ‘‘recycling’’ can be employed on master and worker
nodes. However, considering the size of the target problems that we are interested in mostly ranging from
moderate to large scale, we therefore prefer to employ both ‘‘linear solver’’ and ‘‘recycling’’ steps on the
master node before transferring the upgrade vectors to the worker nodes. Such an implementation can be
especially beneficial when there are limited resources such as computing nodes or storage devices, and a
large number of damping parameters need to be evaluated. It might therefore be beneficial in preventing
our applications from being memory bound. We will demonstrate in the next section that the total compu-
tational cost of multiple damping parameters is nearly the same as the cost with one damping parameter.

In Appendix D, we provide a detailed descriptions as Algorithm 1 to summarize our new Levenberg-
Marquardt method based on Krylov subspace approximation and parallel selection of the damping parame-
ters. We name our new LM method as ‘‘LM-RLSQR’’ because of the ‘‘R’’ecycled-Krylov-subspace. We also
employ traditional ‘‘LSQR’’ techniques (without recycling) for comparison.
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5. Numerical Results

In this section, we provide numerical examples to demonstrate the efficiency of our new Levenberg-
Marquardt algorithm. The reference problem is the steady state groundwater equation on the square
domain, ½0; 1�3½0; 1�, with fixed hydraulic head at y 5 0 and y 5 1, zero flux boundaries at x 5 0 and x 5 1.

The groundwater equation was solved using the finite difference method on a uniform grid. The parameter
grids are composed of x transmissivity nodes and y transmissivity nodes. The adjoint-state method [Strang,
2007] was used to compute the Jacobian matrix. For the purposes of calibration, the transmissivity and
hydraulic head were ‘‘observed’’ from a solution of the steady state groundwater equation using a reference
transmissivity field.

To have a comprehensive comparison, we provide five sets of tests. In section 5.1, we compare the perfor-
mance of our recycled-LSQR algorithm to other commonly used linear solvers. In section 5.2, we report the
performance of our method in different levels of the model heterogeneity. In section 5.3, we provide a com-
parison of our parallel Levenberg-Marquardt algorithm using recycled-LSQR solver to the parallel
Levenberg-Marquardt algorithms using other linear solvers in calibrating 2-D models with different num-
bers of parameters. In section 5.4, we employ our method to calibrate a more complex 3-D model and
report its corresponding results. In section 5.5, we compare our parallel Levenberg-Marquardt algorithm to
the sequential Levenberg-Marquardt algorithm. We denote our method as ‘‘LM-RLSQR.’’ We further denote
two other reference LM methods, Levenberg-Marquardt method using the QR factorization as ‘‘LM-QR’’ and
Levenberg-Marquardt method using the SVD decomposition as ‘‘LM-SVD.’’

We select Julia as our programing tool because of its efficiency and simplicity. Julia is a high-level program-
ming language designed for scientific computing [Bezanson et al., 2014]. The Julia code for our LM algo-
rithm is available as a part of the upcoming open-source release of Julia version of MADS (Model Analysis
and Decision Support) at ‘‘http://mads.lanl.gov/’’ [Vesselinov et al., 2015]. For the methods of LM-QR and LM-
SVD, the QR factorization and SVD decomposition are both implemented using the system routines provid-
ed in the Julia packages. Julia also contains both sequential and parallel BLAS operations, which provide us
the fine-grained parallelism for the LM algorithms.

As for the computing environment, we run the tests on a Linux desktop with 40 cores of 2.3 GHz Intel Xeon
E5-2650 CPUs, and 64.0 GB memory. To maximize the usage of all the CPU cores for our parallel algorithm,
we specify 10 workers in the coarse-grained parallelism level and four threads for each of the workers in the
fine-grained parallelism.

The stopping criterion is an important issue for any iterative method including the Levenberg-Marquardt
algorithm. In our work, we employ two stopping criterion shown below to justify the convergence of the
iteration,

ðJðkÞÞ0 rðkÞ � TOL1; (26)

jjpðkÞjj2 � TOL2 ðTOL21jjmðkÞjj2Þ; (27)

where TOL151:031026 and TOL251:031023. If either equation (26) or equation (27) are satisfied, the itera-
tion procedure will stop.

5.1. Test on the Projection LSQR Algorithm
In our first numerical example, we first test the accuracy of our recycled LSQR method (‘‘LM-RLSQR’’) using a
reference synthetic log transmissivity field in Figure 2a. The reference method is the parallel LM method
with QR factorization (‘‘LM-QR’’). The reference model is solved on a grid containing 50 3 50, pressure nodes
and a total of 5100 model parameters (50 3 51 log-transmissivities along x axis, 51 3 50 log-transmissivities
along y axis). We generate a ground truth, which is shown in Figure 2a. We utilize the variance (r2

m) and an
exponent (bm—related to the fractal dimension of the field and the power law of the field’s spectrum) to
characterize the heterogeneity of the considered fields [Peitgen and Saupe, 1988]. In this example, we set
the variance r2

m50:25 and power bm523:5. The white circles in the figure are the locations for the hydrau-
lic head observations.
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Figure 1. Two Givens rotations are employed to eliminate both the lower diagonal elements in Bk and the diagonal elements in the
identity matrix, I. The arrow ‘‘!’’ points to the current operating row. The symbol ‘‘x’’ means the element of the matrix, and the symbol
‘‘�’’means the element being modified.

Figure 2. Synthetic log transmissivity field (a) with variance r2
m50:25 and power bm523:5. Hydraulic conductivity and hydraulic head

observation locations are indicated with circles. The results of (b) the inverse modeling solved by LM-QR and our (c) new Levenberg-
Marquardt algorithm are shown. They are visually identical to each other. The RME values of the results in Figures 2b and 2c are 49.0 and
51.0%, respectively. Hence, our method yields a comparable result to that obtained using the LM-QR method.
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We implement the LM-RLSQR method
using 10 damping parameters simulta-
neously and provide the inversion
result using LM-QR and LM-RLSQR in
Figures 2b and 2c, respectively. Com-
paring to the true model in Figure 2a,
our method obtains a good result, rep-
resenting both the high and low log-
permeability regions. Visually, our
method yields a comparable result to
the one obtained using LM-QR in Fig-
ure 2b. To further quantify the inversion
error of different inverse modeling
methods, we calculate the relative-
model-error (RME) of the inversion

RMEðmÞ5 jjm2mrefjj2
jjmref jj2

; (28)

where m is the inversion and mref is
the ground truth. According to equa-
tion (28), the RME value of inversion

result in Figure 2b using LM-QR is 49.0%. By contrast the RME value of our result in Figure 2c is 51.0% with
about 2.0% difference, which quantitatively verifies that our method yields comparable results to the LM-
QR method.

We provide the plot of the rate of convergence of our method in Figure 3 for the different methods. For
comparison, we also provide the result using the classical sequential LM method using the QR-factorization-
based linear solver. We observe that both our LM-RLSQR and the classical LM method yield a very similar
rate of the convergence. At each iteration, these two methods yield almost the same objective function val-
ues. Therefore, together with the inversion result in Figure 2, we demonstrate that LM-RLSQR yields a com-
parable accuracy to the classical Levenberg-Marquardt method.

To compare the computational efficiency, we measure the computational time used in solving the linear
systems in equation (21) for three methods in Figure 4: the parallel LM method with QR factorization
(‘‘LM-QR’’), the parallel LM method with SVD decomposition (‘‘LM-SVD’’), and our method (‘‘LM-RLSQR’’).
The color-bar stands for the computational time. The time cost using LM-RLSQR is in Figure 4a, and the
costs for LM-QR and LM-SVD are provided in Figures 4b and 4c, respectively. As for LM-RLSQR, the first
row in Figure 4a is lighter than the remaining rows, indicating that most of the computational time is
spent on the first damping parameter, and then immediately reduced to almost zero for the remaining
damping parameters. As for the LM-QR method, the time costs are much more expensive than those of
the LM-RLSQR method. The costs in first row in Figure 4b are more expensive than the remaining rows
because it involves the full calculation of the normal equation. As for the LM-SVD method, the time costs
are the most expensive out of all three methods and are evenly distributed over all damping
parameters.

We further provide the average and total time cost in Figure 5 based on Figure 4 to obtain a quantitative
comparison. Specifically, Figure 5a is the average time cost in every damping parameter for three
methods

AverageTime½i�5

X
j5Iteration

Time½i; j�

Number of Iteration
; (29)

where i is the index for the damping parameter, j is the index for the iteration, and the variable of Time½i; j�
is the time cost of solving the linear system using the ith damping parameter at the jth iteration.

Figure 5b is the total time costs at each iteration step for all three methods

Figure 3. The convergence of the classical Levenberg-Marquardt algorithm using
QR factorization in blue and our efficient Levenberg-Marquardt algorithm in red
(LM-RLSQR) are provided. The rates of convergence using these two methods are
very close to each other.
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Total Time½j�5
X

i5dampingparameter

Time½i; j�; (30)

where i, j, and Time½i; j� has the same meaning as the one in equation (29).

In Figure 5a, our method (in red) spends about 0.3 s on average for the first damping parameter, then its
time costs significantly reduce to about 1024 s for the rest of the damping parameters. The LM-QR method
(in blue) spends about 4.3 s for the first damping parameter and 2.8 s for the rest of the damping parame-
ters. The LM-SVD method (in green) is much more time-consuming than both LM-QR and LM-RLSQR meth-
ods. It consistently spends over 100 s for each of the damping parameters.

Figure 4. The computational time costs in solving the linear systems using different damping parameters at all iteration steps for (a) our new LM method, (b) LM-QR method, and
(c) LM-SVD method. The color-bar stands for the computational time. The x axis represents the LM iteration step. The y axis represents index of the damping parameter. Our new method
is the most efficient in solving the linear system out of three methods.
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In Figure 5b, the overall computational time at each iteration step of LM-RLSQR (in red) is the lowest one
among the three methods. For each iteration, LM-RLSQR only costs about 0.3 s opposed to 29.6 and
1152.5 s for the LM-QR and LM-SVD methods, respectively.

Therefore, LM-RLSQR significantly reduced the computational costs in solving the linear systems comparing
to both LM-QR and LM-SVD methods. LM-RLSQR’s advantages come in two parts. One contribution comes
from the recycling of the Krylov subspace, which reduces the computational complexity by an order of the
model dimension for all but the first damping parameter. This can be observed from Figures 4a and 5a,
where there is little computational time spent in the rest of the damping parameters. The other contribu-
tion comes from employment of the subspace approximation of the original problem as we discussed in
section 3. Instead of solving the problem in the original space, LM-RLSQR solves the approximated problem
in a low-dimensional subspace spanned by the basis derived in equation (19), thereby enabling it to be
very efficient. To conclude for this test, our LM-RLSQR method can be much more efficient than both the
LM-QR and LM-SVD in solving the linear systems using the same set of damping parameters.

5.2. Test on the Levels of Heterogeneity
We use the variance (r2

m) and exponent (bm) from the power law spectrum to characterize the heterogenei-
ty of the considered fields [Peitgen and Saupe, 1988]. According to Nowak and Cirpka [2004], the perfor-
mance of the LM algorithm can be impacted with respect to the levels of the heterogeneity. In this section,
we test our method on different levels of the heterogeneity and compare the results to the LM-QR method.
The model consists a total of 5100 model parameters (50 3 51 log-transmissivities along x axis, 51 3 50
log-transmissivities along y axis).

Similar to the tests in Nowak and Cirpka [2004], we first vary model heterogeneity by changing the value of
the variance (r2

m). The comparison results are reported in Table 1. Five different levels of variances are test-
ed, r2

m50:1, 0.4, 1.6, 3.2, and 6.4. The efficiency of our method and the reference method are compared
and reported based on the ‘‘time cost on linear solver’’ and ‘‘overall time cost’’ (Columns 2 and 4). With dif-
ferent levels of variance, our method is much more efficient than the LM-QR method. The average speed-
up ratio is about 20 times for the linear solver and 5 times for the overall cost. The accuracy of results are
reported in Columns 3 and 5 using the RME value defined in equation (28). Comparing Column 3 to Column
5, both methods yield results with comparable accuracy.

Another variable specifying the heterogeneity of a model is the exponent, b. While these fields are not
defined in terms of a correlation length, the parameter b plays a role similar to the correlation length. As
b decreases, the fields become smoother (analogous to increasing the correlation length), and as
b increases, the fields become rougher (analogous to decreasing the correlation length) [Peitgen and Saupe,

Figure 5. (a) The average time cost in solving the linear systems of every damping parameter for three methods and (b) the total computational time in solving the linear systems of all
three methods at each iteration step. Our method (in red) yields the least computational time in solving the linear systems comparing to the LM-QR method (in blue) and the LM-SVD
method (in green).

Water Resources Research 10.1002/2016WR019028

LIN ET AL. PARALLEL LEVENBERG-MARQUARDT FOR INVERSE MODELING 6960



1988]. We vary the value of the fractal field, b522:0, 22.3, 22.6, 22.9, and 23.2 and report the corresponding
results of time costs and RME in Table 2. Again, our method yields similar accuracy to those obtained using LM-
QR method. Specifically, observed from Table 2 as the model becomes more heterogeneous (larger b cases).

To summarize, through the results reported in Tables 1 and 2, the performance of our method of LM-RLSQR
in different levels of the heterogeneity is comparable to that of the LM-QR method.

5.3. Test on the Scalability of LM-RLSQR Algorithm
To better understand the performance of our method under a variety of circumstances, we test our method
of LM-RLSQR using different sizes of the problem and varying levels of heterogeneity. The number of
hydraulic head nodes in the problem are 364, 1300, 2964, 5100, 9384, 10,512, and 12,324. The largest three
among these involve 9384, 10,512, and 12,324 parameters, and for these we solve inverse problem using
three different sets of parameters for the random field ðr2

m; bmÞ5ð0:25;23:5Þ, ð0:4;23:2Þ, and ð1:6;22:9Þ,
respectively. We provide the true and inverted transmissivity fields for the three largest models with 9384,
10,512, and 12,324 parameters in Figure 6.

In this example, we test our inversion algorithm using 10 damping parameters. The inversion results for the
three largest problems are provided in Figures 6b, 6d, and 6f. We first compare the accuracy of the inversion
results using our method to those obtained using the LM-QR method and report in Figure 7 the RME value
defined in equation (28). The RME values of the inversion results using our method (in red) and those
obtained using the LM-QR method (in blue) are comparable to each other in Figure 7. Hence, our inversion
method yields good accuracy with respect to varying sizes of the models, consistently. Also, we notice that
with the same number of observations, the quality of the inversion result does not improve when the num-
ber of model parameters is increased. This is because of the ill-posedness of the problem. The limited data
coverage becomes the limiting factor in the resulting inversion accuracy.

In Figure 8, we provide the computational time for all three methods and the speed-up ratio of our method
versus the LM-QR and LM-SVD methods. Specifically, both the overall computational time in solving the lin-
ear systems and the time for the inversion are provided.

Table 2. Performance Comparison on the Levels of the Heterogeneity (Change of Exponent, b) Using the LM-QR Method (Columns
2 and 3) and Our Method of LM-RLSQR (Columns 4 and 5)a

LM-QR LM-RLSQR

Exponent (b) Time (s) RME (Equation (28)) Time (s) RME (Equation (28))

22.0 58.5/66.0 0.88 3.0/11.7 0.86
22.3 57.7/66.2 0.80 3.0/12.1 0.79
22.6 58.3/66.4 0.71 3.0/12.7 0.71
22.9 58.3/65.9 0.62 3.1/11.9 0.63
23.2 57.1/65.8 0.55 3.1/12.4 0.57

aA total of 5100 model parameters (50 3 51 log-transmissivities along x axis, 51 3 50 log-transmissivities along y axis) are created.
The time profile in Columns 2 and 4 are reported in the format of ‘‘time cost on linear solver’’ and ‘‘overall time cost.’’ The relative model
error (RME) reported in Columns 3 and 5 are reported using equation (28). Our method is much more efficient than the LM-QR method
with comparable accuracy with respect to various levels of heterogeneity.

Table 1. Performance Comparison on the Levels of the Heterogeneity (Change of Variance, r2
m) Using the LM-QR Method (Columns

2 and 3) and Our Method of LM-RLSQR (Columns 4 and 5)a

LM-QR LM-RLSQR

Variance (r2
m) Time (s) RME (Equation (28)) Time (s) RME (Equation (28))

0.1 58.3/66.9 0.50 3.3/14.4 0.50
0.4 57.6/66.1 0.49 3.1/13.3 0.52
1.6 58.2/66.8 0.63 3.2/14.1 0.63
3.2 58.9/67.5 0.65 3.1/12.9 0.67
6.4 61.7/70.7 0.72 3.1/13.4 0.75

aA total of 5100 model parameters (50 3 51 log-transmissivities along x axis, 51 3 50 log-transmissivities along y axis) are created.
The time profile in Columns 2 and 4 are reported in the format of ‘‘time cost on linear solver’’ and ‘‘overall time cost.’’ The relative model
error (RME) reported in Columns 3 and 5 are reported using equation (28). Our method is much more efficient than the LM-QR method
with comparable accuracy with respect to various levels of heterogeneity.
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Figure 6. The results using our method for different sizes of the problem: (a, c, e) the true and (b, d, f) inverted log transmissivity fields
using 9384, 10,512, and 12,324 model parameters. Three different types of heterogeneity are employed to create the true models,
ðr2

m; bmÞ5ð0:25;23:5Þ, ð0:4;23:2Þ, and ð1:6;22:9Þ, respectively. Our method yields consistently good accuracy in all cases comparing to
LM-QR method.
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Figures 8a and 8b show the results
for the overall computational time
on the linear solver. In Figure 8a,
all three methods start with
comparable time cost when the
problem sizes are small. However,
as the problem size increases,
the LM-SVD method (in green)
becomes much more expensive
than the other two methods.
Because of limited computational
resources, we only include results
up to the number of the model
parameters around 9384 for LM-
SVD method. The LM-QR method
(in blue) is a more efficient algo-
rithm compared to the LM-SVD
method. For the problem with
12,324 model parameters, LM-QR
method requires about 927.7 s.
For our method (in red), the com-
putational cost is even more effi-

cient than that of the LM-QR method. For the problem with 12,324 model parameters, our method only spends
around 15.7 s.

Another way to visualize the computational efficiency is to compute the relative speed-up ratio between
our method and the LM-QR and LM-SVD methods. The speed-up ratio, r, is calculated by

r5
Time1

Time2
; (31)

where Time1 corresponds to the computational time of the reference method and Time2 corresponds to
the computational time of our method. We provide the speed-up ratios of our method over the LM-QR and
LM-SVD methods in solving the linear systems shown in Figure 8b. As the problem size increases, the
speed-up ratio also increases. The largest speed-up ratio is about 59 for LM-QR method and 881 for LM-SVD
method. Therefore, our method yields a significant speed-up ratio over both the LM-QR and LM-SVD meth-
ods in solving the linear systems.

In addition to the computational time solving the linear systems, a portion of the computational time is
used to calculate the Jacobian matrix, the forward model, and communicate among the computational
nodes. In Figures 8c and 8d, we provide the overall computational time in the inversion for all three meth-
ods when solving different sizes of the problems. The computational time costs are provided in Figure 8c
and the corresponding speed-up ratio is in Figure 8d. The discrepancies among all three methods in the
time cost become smaller when counting the overall computation time. Our method still yields the most
efficient results compared to LM-QR and LM-SVD methods. Visualized in Figure 8d, our method yields about
16 times speed-up ratio over the LM-QR method, and 216 speed-up ratio over the LM-SVD method.

5.4. Test on a Three-Dimensional Model
The 3-D model solves the steady state groundwater equation on a domain that is 500 ½m�3200 ½m�310 ½m�
with extraction of 10 gallons per minute (6:3131024 m3=s) of groundwater from a well near the middle of
the domain (see the depression in head in Figure 10). The model uses fixed head boundary conditions on the
east and west boundaries and zero flux boundaries on the north, south, top, and bottom boundaries. The
inverse analysis estimates 11,052 parameters, 10,926 of which are unknown hydraulic conductivities and 126
of which correspond to the unknown fixed head boundary conditions on the east and west boundaries. A syn-
thetically generated reference log conductivity field was used to obtain the ‘‘observations.’’ The reference field
was a sample Gaussian random field with an anisotropic exponential covariance model

Figure 7. The RME values provided in equation (28) of the inversion results using our
method (in red) and those obtained using the LM-QR method (in blue). Both methods
yield comparable RME values with respect to different sizes of the models.
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A; (32)

where r 5 2, s550 ½m�, and the mean of the field was 24ln ð10Þ. The hydraulic conductivity was then taken
to be eln k ½m=s�. We show the three layers of the 3-D model from the top to the bottom in Figures 9a–9c,
respectively.

The hydraulic-head observations were taken from each of two screens in 17 observation wells distributed
throughout the domain (see Figure 10). The two screens at each well are located in the top and bottom
layers. The objective function to be minimized consists of three terms: (1) a term describing the data misfit,
(2) a term regularizing the log-conductivities, and (3) a term describing the misfit from the prior information
about the east and west boundary conditions. The true boundary conditions are 1 ½m� on the west bound-
ary and 0 ½m� on the east boundary. Prior knowledge of the boundary conditions at the east and west

Figure 8. The computational time (a) for different model sizes in solving the linear systems and (b) the corresponding speed-up ratio. The total computational time (c) for inversion with
different model sizes (including solving the linear system, forward modeling, and data communication, etc.), and (d) the corresponding speed-up ratio. As the model size increases, our
method yields much smaller computational time costs than those of the LM-QR or LM-SVD methods. The largest speed-up ratio in solving the linear system is about 59 times compared
to LM-QR method and 881 times compared to LM-SVD method; while the largest speed-up ratio in inversion is about 16 times opposed to LM-QR method and 216 times opposed to the
LM-SVD method.
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boundaries was assumed to be avail-
able, but different from the true bound-
ary conditions. The prior ‘‘expected’’
boundary condition on the west
boundary was 0:99 ½m� and 20:01 ½m�
on the east boundary.

We employ both ‘‘LM-QR’’ (the refer-
ence method) and our method, ‘‘LM-
RLSQR’’ to the observations in Figure
10. For this test, we use five damping
parameters at each LM iteration, i.e.,
n 5 5 in equation (25) and produce the
inversion results in Figure 11. Specifi-
cally, the inversion results of the log-
hydraulic conductivity along the top,
middle, and the bottom layers of the
3-D model using the reference ‘‘LM-
QR’’ method are shown in Figures 11a,
11c, and 11e, respectively. The results
of the three layers using our ‘‘LM-
RLSQR’’ method are shown in Figures
11b, 11d, and 11f. Visually, both meth-
ods yield results that are similar to
each other. Quantitatively, the RME
value of the inversion to the ground
truth using ‘‘LM-QR’’ method is 18.0%,
while the RME value of the inversion
using ‘‘LM-RLSQR’’ is 18.5%. This RME
only includes errors in the log conduc-
tivity. The inversion results of the
boundary conditions using both meth-
ods are provided in Figure 12, where

both the reference method and our method produce very similar results. However, our method is much
more efficient than ‘‘LM-QR’’ method. The computational time on the linear solver using ‘‘LM-RLSQR’’ is 17.6
second, opposed to 203.4 s for the ‘‘LM-QR’’ method. The overall computational times using ‘‘LM-RLSQR’’
and the ‘‘LM-QR’’ methods are 44.3 and 220.6 s, respectively. The speed-up ratio of our method over the
‘‘LM-QR’’ method is about 11 times for linear solver, and 5 times for the overall.

5.5. Test With Sequential Methods
Classical Levenberg-Marquardt algorithms are usually implemented sequentially. Its efficiency and perfor-
mance can be significantly impacted by the number of trials needed to find optimal values of the damping
parameter. In order to obtain the optimal damping parameter at each iteration, Nielsen [1999] suggested a
set of parameters: q150:25; q250:75, b 5 2, and c 5 3. The parameters q1, q2, b, and c are defined in
Appendix F. However, this selection of parameters may not always be ideal and the ideal choice is depen-
dent upon the characteristics of the inverse problem.

In this section, we provide a comparison of our method to two implementations of the classical sequential
LM algorithms: one with a set of parameters that always produces a good damping parameter on the first
try, and another other one where several damping parameter trials are sometimes required before a good
damping parameter is obtained. The linear solver for the sequential LM algorithm is based on QR factoriza-
tion, because of its superior performance to the SVD-based linear solver. We set up the model dimension to
be 35 3 35 and report the results in Figure 13.

Figure 13a are the convergence plots of our parallel LM method and the classical sequential LM method.
Both our method and the reference converge in 10 steps. In Figure 13b, we provide the number of trials for

Figure 9. The (a) top, (b) middle, and (c) bottom layers of the 3-D model. The
‘‘true’’ log conductivity is obtained from a sample Gaussian random field with an
anisotropic exponential covariance model defined in equation (32) with r 5 2,
s550 ½m�, and the mean of the log conductivity field was 24ln ð10Þ.
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finding the optimal damping parame-
ter at each iteration for the two classi-
cal sequential LM algorithms. We note
that if the parameters are not very well
tuned (blue line), more searching trials
will be required. The search for the
optimal damping parameter means
that extra linear systems must be
solved, thereby increasing the compu-
tational costs. We plot the time profiles
for all three cases in Figure 13c: our
parallel LM method, and the classical
LM methods using the optimal and
nonoptimal parameter sets as shown
in Figure 13b. Both the computational
time profiles on linear solver (blue)
and inversion (yellow) are provided.
The extra computational time costs
can be observed by comparing the
two implementations of the classical
LM methods. Our parallel LM method
has the least computational time costs
for both the linear solver and the
inversion.

6. Conclusions

We have developed a computationally
efficient Levenberg-Marquardt algo-
rithm for highly parameterized inverse
modeling that is well-suited to a paral-
lel computational environment. Our

method involves both coarse and fine-grained parallelism. At the level of coarse-grained parallelism, we
develop a parallel search scheme, which handles multiple damping parameter at the same time. For each
damping parameter, we employ a Krylov-subspace-recycling linear solver to solve the linear system in the
Levenberg-Marquardt algorithm. Specifically, we first build a subspace with the Krylov basis obtained from
solving the linear system using the first damping parameter, and then we further project the linear systems
using the rest of the damping parameters down to the generated subspace.

Through our computational cost analysis, we show that the efficiency of the Levenberg-Marquardt algo-
rithm can be significantly improved by these computational techniques. The actual computational complex-
ity can be reduced by an order of the model dimension for all but the first damping parameter. We then
applied our method to solve a steady state groundwater equation and compared the performance to two
other widely used methods (LM-QR and LM-SVD) in both parallel and sequential computing environments.
Our numerical examples demonstrate that our new method yields accurate results, which are comparable
to those obtained from LM-QR and LM-SVD methods. Most importantly, our method is much more efficient
than LM-QR and LM-SVD methods.

To summarize, with the significant improvement of the computational power in the past decade, the linear
algebra solver is often the bottleneck for the successful utilization of Levenberg-Marquardt algorithm in
hydraulic inverse modeling. The contribution of our work is to separate the damping parameter from the
solution space and employ a Krylov-subspace recycling technique to reduce the computational costs. Our
method can be mostly effective and efficient for inverse-model applications when a large number of model
parameters need to be calibrated and the Jacobian matrix (representing derivatives of model observations
and regularization terms with respect to model parameters) can be computed relatively efficiently (for

Figure 10. The hydraulic heads obtained using the ‘‘true’’ heterogeneity field
along the (a) top, (b) middle, and (c) bottom layers of the 3-D model domain. The
black dots show the locations of the observation wells.
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example, using adjoint methods or analytical solutions). On the other hand, as for applications where the
calculation of Jacobian matrix is the dominant computational cost, other computational techniques such as
model reduction or Jacobian-free methods may be more effective. In general, our method has great

Figure 11. The inversion results of the (a) top, (c) middle, and (e) bottom layers of the 3-D model using the reference method of ‘‘LM-QR,’’ and those of the (b) top, (d) middle, and (f) bot-
tom layers obtained using our ‘‘LM-RLSQR’’ method. Both methods yield comparable results. However, ‘‘LM-RLSQR’’ is much more computationally efficient than ‘‘LM-QR.’’

Figure 12. The inversion results of the boundary conditions using (a) ‘‘LM-QR’’ method and our (b) ‘‘LM-RLSQR’’ method. Both the methods yield similar results.
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potential to characterize subsurface heterogeneity for moderate or even large-scale problems with a large
number of model parameters where the Jacobian can be computed efficiently.

Appendix A: Residual and Gradient of Generalized Least Squares Problems

We rewrite equation (5) as

m 5 argmin
m

lðmÞf g5 argmin
m

fjjrlðmÞjj22g5
����
���� d2f ðmÞffiffiffi

k
p

m

" #����
����

2

2
; (A1)

and the residual vector rlðmÞ is defined as

Figure 13. (a) A comparison of the convergence of the classical sequential LM algorithm versus our ‘‘LM-RLSQR’’ method. (b) A comparison of the number of the trials for finding the
damping values using optimal versus nonoptimal parameter sets. (c) The time profiles for both the linear solver and the inversion using classical sequential LM method with and without
optimal parameter sets as well as our parallel LM method. Our method has the least computational time costs for both the linear solver and the inversion compared to the classical
sequential LM method with and without optimal parameter sets.
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rlðmÞ5
d2f ðmÞffiffiffi

k
p

m

" #
: (A2)

Based on the residual vector in equation (A2), we derive the Jacobian matrix

Jl 5
@ðrlÞi
@mj


 �
i51...~n ;j51... ~m

5

rðrlÞT1
rðrlÞT2

�

rðrlÞT~n

2
666664

3
777775; (A3)

where ~m is the number of model parameter and ~n is the number of observations. The gradient of equation
(A1) can be written as

Gradl52JT
l rlðmÞ: (A4)

Similarly, we rewrite the generalized least squares form in equation (6)

m 5 arg min
m

gðmÞf g5 arg min
m

fjjrgðmÞjj22g5
����
���� R21

2 ðd2f ðmÞÞffiffiffi
k
p

Q21
2 ðm2m0Þ

" #����
����

2

2
; (A5)

where the matrices R and Q are defined according to equations (7) and (8). The residual vector of the gener-
alized least squares can be defined as

rgðmÞ5
R21

2 ðd2f ðmÞÞffiffiffi
k
p

Q21
2 ðm2m0Þ

" #
; (A6)

and the Jacobian matrix Jg of equation (A5) is

Jg 5
@ðrgÞi
@mj


 �
i51...~n ;j51... ~m

5

rðrgÞT1
rðrgÞT2

�

rðrgÞT~n

2
666664

3
777775: (A7)

Hence, the gradient of the generalized least squares problem in equation (A5) has the same form as that of
the ordinary least squares problem

Gradg52JT
g rgðmÞ; (A8)

where the Jacobian matrix Jg and the residual vector rg are given in equations (A6) and (A7), respectively.

Without loss of generality, we pose the gradient of the inverse modeling as a general form of

Grad52JT rðmÞ; (A9)

where the Jacobian matrix J and residual vector rðmÞ are further defined according to the specific least
squares formulation utilized.

Appendix B: Krylov Subspace Approximation Using Golub-Kahan-Lanczos
Bidiagonalization

Solving for the search direction of pðkÞ in equation (14) or (15) is a typical linear system solver. To describe
the technique of Krylov subspace without loss of generality, in this appendix we provide with a general line-
ar least squares problem

min
m
jjJ m2rjj22: (B1)

The Krylov subspace is usually defined as
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Kk5KkðJ0 J; J0 rÞ; (B2)

where k is the dimension of the subspace. For most of the applications, k � rankðJÞ.

The Golub-Kahan-Lanczos (GKL) bidiagonalization technique provides a method to obtain the basis to span
the Krylov subspace in equation (B2). The GKL bidiagonalization is an iterative procedure. At every iteration,
the current most significant basis will be obtained. The iteration stops when the subspace reaches a good
approximation to the original space. Here we provide the major procedures of the GKL bidiagonalization.

We start the GKL procedure with the right-hand side vector r

bð1Þuð1Þ5r; að1Þvð1Þ5J0 uð1Þ; (B3)

where jjuð1Þjj25jjvð1Þjj251, and for j51; 2; . . ., we take

bðj11Þuðj11Þ5J vðjÞ2aðjÞuðjÞ;

aðj11Þvðj11Þ5J0 uðj11Þ2bðj11ÞvðjÞ;

(
(B4)

where aðj11Þ 	 0 and bðj11Þ 	 0.

After k steps of the recursion in equations (B3) and (B4), we can decompose the matrix J into three matrices:
Uðk11Þ; BðkÞ, and V ðkÞ

V ðkÞ5 vð1Þ; vð2Þ; . . . ; vðkÞ
� 

; Uðk11Þ5 uð1Þ; uð2Þ; . . . ;uðk11Þ
� 

; (B5)

BðkÞ5

að1Þ

bð2Þ að2Þ

bð3Þ . .
.

. .
.

aðkÞ

bðk11Þ

2
66666666664

3
77777777775
: (B6)

These three matrices satisfy

bð1ÞUðk11Þeð1Þ5r; (B7)

JV ðkÞ5Uðk11ÞBðkÞ; (B8)

J0Uðk11Þ5V ðkÞðB0ÞðkÞ1aðk11ÞV ðk11Þe0ðk11Þ; (B9)

where the unit vector eðiÞ has value 1 at the ith location and zeros elsewhere, i.e., eðiÞ5 0; . . . ; 1; . . . 0½ �.

The basis of the Krylov subspace in equation (B2) is now given by the column vectors in Vk [Paige and Saun-
ders, 1982a,1982b]

Kk5KkðJ0 J; J0 rÞ5spanðV ðkÞÞ: (B10)

Once the Krylov subspace is generated, we can project the original problem in equation (B1) down to the
subspace generated by spanðVðkÞÞ and yield an approximated linear least squares problem

min
yðkÞ
jjBðkÞyðkÞ2bð1Þeð1Þjj22; (B11)

where the approximated solution yðkÞ satisfying

mðkÞ5V ðkÞyðkÞ: (B12)

The projected problem in equation (B11) usually yields a good approximation to the original one in equa-
tion (B1) with much lower dimension. Hence, solving equation (B11) for the approximate solution yk is com-
putationally much more efficient than solving the original problem in equation (B1). The matrix of Bk is
ðk11Þ3k, which is much smaller than the original problem size. Instead of solving the projected least
squares problem in equation (B11) using direct methods, Paige and Saunders [1982a,1982b] developed a
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three-term-recurrences formulation to obtain the solution of the original problem in equation (B1) directly.
Specifically, applying the QR decomposition of BðkÞ we have

ðQðkÞÞ0BðkÞ5
RðkÞ

0

" #
; ðQðkÞÞ0ðbð1Þeð1ÞÞ5

fðkÞ

�/
ðk11Þ

" #
; (B13)

where RðkÞ and fðkÞ are

RðkÞ5

qð1Þ hð1Þ

qð2Þ hð2Þ

. .
. . .

.

qðk21Þ hðk21Þ

qðkÞ

2
6666666664

3
7777777775
; fðkÞ5

/ð1Þ

/ð2Þ

�

/ðk21Þ

/ðkÞ

2
666666664

3
777777775
: (B14)

Therefore, according to Paige and Saunders [1982a,1982b], the three-term recursion to update the solution
mðkÞ at each iteration step can be obtained

mðkÞ5mðk21Þ1/ðkÞzðkÞ; zðkÞ5
1

qðkÞ
ðvðkÞ2hðk21Þzðk21ÞÞ: (B15)

The major computational cost of generating the Krylov subspace using the GKL bidiagonalization technique
to solve the linear system in equation (B1) is the recursion procedure in equations (B3) and (B4). The three-
term-recursion procedure to update the solution in equation (B13) to equation (B15) is comparatively com-
putationally cheap.

Appendix C: Givens Rotations for Augmented Least Squares Problems

To solve the projected problem in equation (18), we can employ two Givens rotations at each iteration to
eliminate two elements: one is the lower off-diagonal element in BðkÞ and the other one is the diagonal ele-
ment in the identity matrix I. A schematic illustration of this procedure is shown in Figure 1. Specifically, pro-
vided with a Givens matrix Gi;j for the ith row and jth row, at each iteration, we will have

G1;2 G1;k12

BðkÞffiffiffi
l
p

I

" #
: (C1)

Because of the orthogonality of the Givens matrix, we can transform the least squares problem in equation
(18) into an equivalent problem

min
yðkÞ

����
����G1;2 G1;k12

BðkÞffiffiffi
l
p

I

" #
yðkÞ2bð1Þeð1Þ

 !����
����

2

( )
: (C2)

We perform k Givens’ rotation steps

min
yðkÞ

����
����Gk;k11 Gk;2k11 � � �G1;2 G1;k12

BðkÞffiffiffi
l
p

I

" #
yðkÞ2bð1Þeð1Þ

 !����
����

2

( )
; (C3)

which yields an equivalent least squares problem

min
yðkÞ

����
���� ðRðkÞÞ0

0

" #
yðkÞ2

ðfðkÞÞ0

ð/ðkÞÞ0

" # !����
����

2

( )
: (C4)

It is worth mentioning that the upper bidiagonal matrix ðRðkÞÞ0 in equation (C4) now contains the damping
parameter of l.

As an example, we provide all the details of the matrix operations based on a simple 3 3 2 matrix BðkÞ, 2 3

2 identity matrix I, and a scalar l 5 1. Let
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~B5
BðkÞffiffiffi
l
p

I

" #
5

1 0

2 3

0 4

1 0

0 1

2
666666664

3
777777775
: (C5)

We employ a rotation matrix to ~B

G1;45

0:71 0 0 0:71 0

0 1 0 0 0

0 0 1 0 0

20:71 0 0 0:71 0

0 0 0 0 1

2
666666664

3
777777775
; (C6)

such that the element~Bð4; 1Þ can be eliminated

G1;4

BðkÞffiffiffi
l
p

I

" #
5

1:4 0

2 3

0 4

0 0

0 1

2
666666664

3
777777775
; (C7)

where the modified elements are in bold.

In order to transform the resulting matrix into an upper bidiagonal form, we need to eliminate the element
of ~Bð2; 1Þ by another Givens rotation

G1;25

0:58 0:82 0 0 0

20:82 0:58 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
666666664

3
777777775
; (C8)

G1;2 G1;4

BðkÞffiffiffi
l
p

I

" #
5

2:4 2:4

0 1:7

0 4

0 0

0 1

2
666666664

3
777777775
: (C9)

Observed from equation (C9), the first column of the matrix ~B has been rotated into an upper bidiagonal
matrix with the lower identity matrix element eliminated. Based on a similar idea, we can further rotate the
second column of ~B. As the operations proceed, we will transform the matrix ~B into an upper bidiagonal
matrix

~B !

2:4 2:4

0 4:5

0 0

0 0

0 0

2
666666664

3
777777775
: (C10)
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Appendix D: Levenberg-Marquardt With Paralleled Recycled LSQR Algorithm

In this appendix, we provide a detailed description to summarize our new Levenberg-Marquardt algorithm
based on Krylov subspace approximation and parallel selection of the damping parameters.

Appendix E: Computational Cost Analysis

To better understand the cost of our new Levenberg-Marquardt algorithm, we provide a computational
cost analysis of our method. Considering most of the numerical operations in Algorithm 1 involve only
matrix and vector operations, we use the floating point operations per second (FLOPS) and the big-O nota-
tion to quantify the computational cost [Golub and Van Loan, 1996]. In numerical linear algebra, BLAS opera-
tions are categorized into three levels. Level-1 operations involve an amount of data and arithmetic that is

Algorithm 1 Levenberg-Marquardt with Paralleled Recycled LSQR Algorithm (LM-RLSQR)

Require: mð0Þ; kmax;

Ensure: mðkÞ

1: Initialize found5false; Jacobian5true;

2: Initialize the damping parameter, l, according to equation (25);

3: Transform the problem according to equation (22), if desired;

4: while {ðnot foundÞ and ðk < kmaxÞ} do

5: for i50 TO n-1 do % This is a parallel-for loop in a multi-core computing environment

6: Generate theith damping parameter,lðkÞi ;

7: if {i 5 0} then

8: Calculate the new Jacobian matrix according to the adjoint-state method in Strang [2007];

9: Generate the Krylov subspace according to equations (B3) and (B4), and then project the problem
down to the Krylov subspace using equation (18);

10: Solve for pðkÞ using the first damping parameter of lðkÞ0 according to equation (20);

11: else

12: Solve for pðkÞ in the generated subspace using lðkÞi according to equation (20);

13: end if

14: end for

15: if {Stopping criterion are satisfied} then

16: found5true;

17: Return with solutionmðkÞ;

18: else

19: Transform the solution using equation (24);

20: Evaluate the objective function values for each search direction, pðkÞi (this is implemented in
parallel);

21: Use the best pðkÞj to update mðk11Þ5mðkÞ1pðkÞj ;

22: Update the seed damping parameter lðkÞj according to equation (F2);

23: k  k11;

24: end if

25: end while
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linear in the dimension of the operation. Those operations involving a quadratic amount of data and a qua-
dratic amount of work are Level-2 operations [Golub and Van Loan, 1996]. Following this notation, vector
dot-product, addition and subtraction are examples of BLAS Level-1 operations (BLAS 1). Matrix-vector mul-
tiplication is a BLAS Level-2 operation (BLAS 2).

To set up the problem, we assume that the number of model parameter is ~m, the number of observations is
~n, hence the size of the Jacobian matrix ~n3 ~m. As we mentioned earlier, we employ the adjoint-state meth-
od [Custodio et al., 2012; Strang, 2007] to calculate the Jacobian matrix and only focus on the calculation of
the search direction.

E1. Computational Costs of Algorithm 1
Provided with a Jacobian matrix, the computational costs of our method at each iteration step come from
two parts: the cost of solving the linear system with the first damping parameter and the cost of solving the
linear system with the rest of the damping parameters. The most expensive part in solving for the search
direction with the first damping parameter is equations (B3) and (B4), where three matrix-vector multiplica-
tions are involved. Assume the dimension of the Krylov subspace is k1, the costs associated with equations
(B3), (B4), and (20) are

COSTLM2RLSQR21 
 k1 � Oð ~m3~nÞ: (E1)

The computational cost of solving for the search directions of the rest of the damping parameters only
come from equation (20), which is

COSTLM2RLSQR2Rest 
 k1ðn21Þ � Oð ~mÞ; (E2)

where n is the number of l values that are being used.Therefore, the total computational costs of Algorithm
1 at every iteration are

COSTLM2RLSQR 5COSTLM2RLSQR211COSTLM2RLSQR2Rest ;


 k1ðOð ~m3~nÞ1ðn21ÞOð ~mÞÞ:
(E3)

Observing the total cost in equation (E3), the costs associated with the rest of the damping parameters are
much smaller in comparison to the costs with the initial damping parameter, since typically n� ~n. In prac-
tice, we often use n 5 10, whereas ~n is often hundreds, thousands, or even hundreds of thousands.

E2. Computational Costs of Classical Levenberg-Marquardt Method
To have a comprehensive comparison, we also provide the computational costs of the sequential
Levenberg-Marquardt method based on the QR factorization as the linear solver (LM-QR).

Again, given an initial guess of the damping parameter, the computational costs associated is

COSTLM2QR21 
 Oð~n3 ~m2Þ1Oð ~m3Þ1Oð~n3 ~mÞ1Oð ~m2Þ; (E4)

where the first term is associated with forming of the normal equation, the second term is associated with
the QR factorization, the third term is associated with forming the right-hand side, and the fourth term is
associated with the back-substitution for the solution.

Once the damping parameter is updated, some parts of the normal equation in equation (11) or equation
(12) can be saved and reused. However, the expensive QR factorization and the back-substitution cannot be
avoided, therefore the costs for the updated damping parameter will be

COSTLM2QR2Rest 
 Oð ~m3Þ1Oð~n3 ~mÞ1Oð ~m2Þ: (E5)

Hence, the total costs of sequential LM-QR at every iteration are

COST 5COSTLM2QR211COSTLM2QR2Rest;


 Oð~n3 ~m2Þ1k2ðOð ~m3Þ1Oð~n3 ~mÞ1Oð ~m2ÞÞ;
(E6)

where k2 is the number of damping parameters that are being used.
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By comparing the computational costs of our method in equation (E3) to the costs of the classical LM meth-
od in equation (E6), one sees that our method significantly reduces the computational costs in the ‘‘linear
solver’’ operation.

E3. Computational Costs Comparison to Other Krylov Subspace Solver
In this section, we compare the computational costs of employing our method to that of other commonly
used Krylov subspace solvers in solving the Marquardt’s formulation in equation (12). We select the Bi-
Conjugate Gradient method (BiCG) method [Saad, 2003] as the reference method. The BiCG iterative meth-
od is designed for nonsymmetric systems. If the system becomes symmetric, the BiCG method will collapse
to classical Conjugate Gradient (CG) method [Watkins, 2010].

The classical Marquardt’s formulation in equation (12) can be written equivalently in the normal equation

min pðkÞ fjjJðkÞpðkÞ2ð2rðkÞÞ jj221ljjDpðkÞjj22g ! ðJðkÞÞT JðkÞ1lDT D
� �

pðkÞ52ðJðkÞÞT rðkÞ; ! ~A
ðkÞ

pðkÞ5~b
ðkÞ
;

(E7)

where the system matrix ~A
ðkÞ

5 ðJðkÞÞT JðkÞ1lDT D
� �

and the right-hand side vector ~b
ðkÞ

52ðJðkÞÞT rðkÞ.

The computational cost of employing BiCG iterative method to solve the linear system in equation (E7) is
dominated by the matrix-vector multiplication with system ~A

ðkÞ
. However, rather than explicitly constructing

the system ~A
ðkÞ

, we decompose the matrix-vector multiplication with system ~A
ðkÞ

into nested matrix-vector
multiplications, i.e., one with JðkÞ and the other with ðJðkÞÞT . Following this, the computational complexity
can be reduced from O ð~n3Þ to O ð~n2Þ. Therefore, the overall computational cost of employing BiCG itera-
tive solver to the classical Marquardt’s formulation is

COSTBiCG 
 n � k2 � Oð ~m3~nÞ; (E8)

where n is the number of damping parameters and k2 is the dimension of the Krylov subspace.

On the other hand, if we transform the classical Marquardt’s formulation to the standard form shown in
equation (23), the GKL bidiagonalization can be employed to the transformed Jacobian matrix �J ðkÞ instead
of to the augmented system matrix. The resulting computational cost has been provided in equation (E3).

Comparing equation (E3) to equation (E8), the cost in equation (E3) is much smaller. The cost has been
reduced by an order of magnitude for the remaining trials of the damping parameter because of the sub-
space recycling.

E4. Computational Cost Comparison to ‘‘SVD-Assist’’ Functionality in PEST
Another type of subspace-recycling technique named ‘‘SVD-Assist’’ is developed in Tonkin and Doherty
[2005] and incorporated in the software package PEST [Doherty, 2015]. In this section, we provide some
comparisons of our method to the ‘‘SVD-Assist’’ in PEST.

The major commonality of ‘‘SVD-Assist’’ and our method is that both methods are based on subspace
approximation and recycling. Some substantial differences between these two techniques exist both con-
ceptually and computationally. The idea of the ‘‘SVD-Assist’’ is to construct a few ‘‘super’’ parameters as basis
vectors to form a subspace such that the model in the original space can be projected down to the new
subspace. The approach to obtain the ‘‘super’’ parameters is based on the SVD decomposition of the
weighted Jacobian matrix.

Conceptually, ‘‘SVD-Assist’’ is based on a linearity assumption that apparently will be violated for the nonlin-
ear models. Hydrogeological models typically fall in the nonlinear category. To avoid this limitation, ‘‘SVD-
Assist’’ methodology employs periodic recalculations of the super parameters during the optimization pro-
cess [Doherty and Hunt, 2010, p. 6]. However, in ‘‘SVD-Assist’’ there is no theoretical guidance to define
when the recalculations of the ‘‘super’’ parameters is needed. By contrast, our method does not impose any
linearity assumption. Furthermore, our method realizes the separation of the damping parameters from the
solution subspace, while ‘‘SVD-Assist’’ does not.

Computationally, the costs of constructing the subspace using ‘‘SVD-Assist’’ and our method can be also dif-
ferent. ‘‘SVD-Assist’’ can apply two schemes to obtain the subspace basis, the singular vectors, according to
the PEST User Manual [Doherty, 2015]. One option is based on the direct SVD decomposition, and the other
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option is to employ LSQR, i.e., to reformulate the SVD as a two-step decomposition: a bidiagonalization on
the Jacobian matrix followed with a SVD decomposition on the bidiagonal matrix [Golub and Kahan, 1965].
The computational costs associated with these two schemes of direct SVD and LSQR based are Oð~m3Þ and
Oð~m2Þ, respectively. The SVD decomposition is the default and generally more frequently used option. On
the other hand, the cost of our method is Oð ~m2Þ, consistently. Hence, the computational cost of our meth-
od is either better or comparable to ‘‘SVD-Assist.’’

One of the benefits of ‘‘SVD-Assist’’ is that a full Jacobian matrix is only needed when the super parameters
are recalculated. Our method relies on the use of fast methods for computing the Jacobian matrix. ‘‘SVD-
Assist’’ provides an advantage when these methods are not available, because it does not require them.
When the computation of the Jacobian is the performance bottleneck (e.g., if finite difference methods are
being used to compute the Jacobian for an expensive model), our method will provide little benefit while
‘‘SVD-Assist’’ may be helpful.

Appendix F: Selection of the Damping Parameter in Levenberg-Marquardt
Algorithm

Marquardt [1963] developed a popular updating scheme. Assuming an approximation LðhÞ to rðm1hÞ with
a small step of h, a quantity called the gain factor can be defined as

q5
rðmÞ2rðm1hÞ

Lð0Þ2LðhÞ : (F1)

Based on the value of q, we update the damping parameter via

uðxÞ 5

l5b � l if q < q1

l5
l
c

if q > q2

l5l otherwise;

8>>><
>>>:

(F2)

where 0 < q1 < q2 < 1 and b; c > 1, specifically q150:25; q250:75, b 5 2, and c 5 3 are good values in
many cases [Nielsen, 1999].
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